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Abstract—Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often
outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health
information could be exposed to those third party servers and to unauthorized parties. To assure the patients’ control over access
to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure,
scalability in key management, flexible access and efficient user revocation, have remained the most important challenges toward
achieving fine-grained, cryptographically enforced data access control. In this paper, we propose a novel patient-centric framework
and a suite of mechanisms for data access control to PHRs stored in semi-trusted servers. To achieve fine-grained and scalable data
access control for PHRs, we leverage attribute based encryption (ABE) techniques to encrypt each patient’s PHR file. Different from
previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into
multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy
is guaranteed simultaneously by exploiting multi-authority ABE. Our scheme also enables dynamic modification of access policies or
file attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive
analytical and experimental results are presented which show the security, scalability and efficiency of our proposed scheme.
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1 INTRODUCTION

In recent years, personal health record (PHR) has e-
merged as a patient-centric model of health information
exchange. A PHR service allows a patient to create,
manage, and control her personal health data in one
place through the web, which has made the storage, re-
trieval, and sharing of the the medical information more
efficient. Especially, each patient is promised the full
control of her medical records and can share her health
data with a wide range of users, including healthcare
providers, family members or friends. Due to the high
cost of building and maintaining specialized data cen-
ters, many PHR services are outsourced to or provided
by third-party service providers, for example, Microsoft
HealthVault1. Recently, architectures of storing PHRs in
cloud computing have been proposed in [2], [3].

While it is exciting to have convenient PHR services
for everyone, there are many security and privacy risks
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which could impede its wide adoption. The main con-
cern is about whether the patients could actually control
the sharing of their sensitive personal health information
(PHI), especially when they are stored on a third-party
server which people may not fully trust. On the one
hand, although there exist healthcare regulations such
as HIPAA which is recently amended to incorporate
business associates [4], cloud providers are usually not
covered entities [5]. On the other hand, due to the high
value of the sensitive personal health information (PHI),
the third-party storage servers are often the targets of
various malicious behaviors which may lead to expo-
sure of the PHI. As a famous incident, a Department
of Veterans Affairs database containing sensitive PHI
of 26.5 million military veterans, including their social
security numbers and health problems was stolen by an
employee who took the data home without authorization
[6]. To ensure patient-centric privacy control over their
own PHRs, it is essential to have fine-grained data access
control mechanisms that work with semi-trusted servers.

A feasible and promising approach would be to en-
crypt the data before outsourcing. Basically, the PHR
owner herself should decide how to encrypt her files and
to allow which set of users to obtain access to each file. A
PHR file should only be available to the users who are
given the corresponding decryption key, while remain
confidential to the rest of users. Furthermore, the patient
shall always retain the right to not only grant, but also
revoke access privileges when they feel it is necessary [7].
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However, the goal of patient-centric privacy is often in
conflict with scalability in a PHR system. The authorized
users may either need to access the PHR for personal
use or professional purposes. Examples of the former
are family member and friends, while the latter can be
medical doctors, pharmacists, and researchers, etc. We
refer to the two categories of users as personal and profes-
sional users, respectively. The latter has potentially large
scale; should each owner herself be directly responsible
for managing all the professional users, she will easily
be overwhelmed by the key management overhead. In
addition, since those users’ access requests are generally
unpredictable, it is difficult for an owner to determine a
list of them. On the other hand, different from the single
data owner scenario considered in most of the existing
works [8], [9], in a PHR system, there are multiple owners
who may encrypt according to their own ways, possibly
using different sets of cryptographic keys. Letting each
user obtain keys from every owner whose PHR she
wants to read would limit the accessibility since patients
are not always online. An alternative is to employ a
central authority (CA) to do the key management on
behalf of all PHR owners, but this requires too much
trust on a single authority (i.e., cause the key escrow
problem).

In this paper, we endeavor to study the patient-
centric, secure sharing of PHRs stored on semi-trusted
servers, and focus on addressing the complicated and
challenging key management issues. In order to protect
the personal health data stored on a semi-trusted server,
we adopt attribute-based encryption (ABE) as the main
encryption primitive. Using ABE, access policies are
expressed based on the attributes of users or data, which
enables a patient to selectively share her PHR among
a set of users by encrypting the file under a set of
attributes, without the need to know a complete list of
users. The complexities per encryption, key generation
and decryption are only linear with the number of
attributes involved. However, to integrate ABE into a
large-scale PHR system, important issues such as key
management scalability, dynamic policy updates, and
efficient on-demand revocation are non-trivial to solve,
and remain largely open up-to-date. To this end, we
make the following main contributions:

(1) We propose a novel ABE-based framework for
patient-centric secure sharing of PHRs in cloud comput-
ing environments, under the multi-owner settings. To ad-
dress the key management challenges, we conceptually
divide the users in the system into two types of domains,
namely public and personal domains. In particular, the ma-
jority professional users are managed distributively by
attribute authorities in the former, while each owner only
needs to manage the keys of a small number of users in
her personal domain. In this way, our framework can
simultaneously handle different types of PHR sharing
applications’ requirements, while incurring minimal key
management overhead for both owners and users in the
system. In addition, the framework enforces write access

control, handles dynamic policy updates, and provides
break-glass access to PHRs under emergence scenarios.

(2) In the public domain, we use multi-authority ABE
(MA-ABE) to improve the security and avoid key escrow
problem. Each attribute authority (AA) in it governs
a disjoint subset of user role attributes, while none of
them alone is able to control the security of the whole
system. We propose mechanisms for key distribution
and encryption so that PHR owners can specify per-
sonalized fine-grained role-based access policies during
file encryption. In the personal domain, owners directly
assign access privileges for personal users and encrypt
a PHR file under its data attributes. Furthermore, we
enhance MA-ABE by putting forward an efficient and
on-demand user/attribute revocation scheme, and prove
its security under standard security assumptions. In this
way, patients have full privacy control over their PHRs.

(3) We provide a thorough analysis of the complexity
and scalability of our proposed secure PHR sharing
solution, in terms of multiple metrics in computation,
communication, storage and key management. We al-
so compare our scheme to several previous ones in
complexity, scalability and security. Furthermore, we
demonstrate the efficiency of our scheme by imple-
menting it on a modern workstation and performing
experiments/simulations.

Compared with the preliminary version of this paper
[1], there are several main additional contributions: (1)
We clarify and extend our usage of MA-ABE in the
public domain, and formally show how and which types
of user-defined file access policies are realized. (2) We
clarify the proposed revocable MA-ABE scheme, and
provide a formal security proof for it. (3) We carry out
both real-world experiments and simulations to evaluate
the performance of the proposed solution in this paper.

2 RELATED WORK

This paper is mostly related to works in cryptograph-
ically enforced access control for outsourced data and
attribute based encryption. To realize fine-grained ac-
cess control, the traditional public key encryption (PKE)
based schemes [8], [10] either incur high key manage-
ment overhead, or require encrypting multiple copies
of a file using different users’ keys. To improve upon
the scalability of the above solutions, one-to-many en-
cryption methods such as ABE can be used. In Goyal
et. al’s seminal paper on ABE [11], data is encrypted
under a set of attributes so that multiple users who
possess proper keys can decrypt. This potentially makes
encryption and key management more efficient [12]. A
fundamental property of ABE is preventing against user
collusion. In addition, the encryptor is not required to
know the ACL.

2.1 ABE for Fine-grained Data Access Control
A number of works used ABE to realize fine-grained
access control for outsourced data [13], [14], [9], [15].
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Especially, there has been an increasing interest in apply-
ing ABE to secure electronic healthcare records (EHRs).
Recently, Narayan et al. proposed an attribute-based
infrastructure for EHR systems, where each patient’s
EHR files are encrypted using a broadcast variant of
CP-ABE [16] that allows direct revocation. However, the
ciphertext length grows linearly with the number of
unrevoked users. In [17], a variant of ABE that allows
delegation of access rights is proposed for encrypted
EHRs. Ibraimi et.al. [18] applied ciphertext policy ABE
(CP-ABE) [19] to manage the sharing of PHRs, and
introduced the concept of social/professional domains.
In [20], Akinyele et al. investigated using ABE to gen-
erate self-protecting EMRs, which can either be stored
on cloud servers or cellphones so that EMR could be
accessed when the health provider is offline.

However, there are several common drawbacks of the
above works. First, they usually assume the use of a
single trusted authority (TA) in the system. This not
only may create a load bottleneck, but also suffers from
the key escrow problem since the TA can access all the
encrypted files, opening the door for potential privacy
exposure. In addition, it is not practical to delegate
all attribute management tasks to one TA, including
certifying all users’ attributes or roles and generating
secret keys. In fact, different organizations usually form
their own (sub)domains and become suitable authorities
to define and certify different sets of attributes belonging
to their (sub)domains (i.e., divide and rule). For example, a
professional association would be responsible for certify-
ing medical specialties, while a regional health provider
would certify the job ranks of its staffs. Second, there
still lacks an efficient and on-demand user revocation
mechanism for ABE with the support for dynamic policy
updates/changes, which are essential parts of secure
PHR sharing. Finally, most of the existing works do
not differentiate between the personal and public do-
mains, which have different attribute definitions, key
management requirements and scalability issues. Our
idea of conceptually dividing the system into two types
of domains is similar with that in [18], however a key
difference is in [18] a single TA is still assumed to govern
the whole professional domain.

Recently, Yu et al. (YWRL) applied key-policy ABE
to secure outsourced data in the cloud [9], [15], where
a single data owner can encrypt her data and share
with multiple authorized users, by distributing keys to
them that contain attribute-based access privileges. They
also propose a method for the data owner to revoke
a user efficiently by delegating the updates of affected
ciphertexts and user secret keys to the cloud server.
Since the key update operations can be aggregated over
time, their scheme achieves low amortized overhead.
However, in the YWRL scheme, the data owner is also
a TA at the same time. It would be inefficient to be
applied to a PHR system with multiple data owners
and users, because then each user would receive many
keys from multiple owners, even if the keys contain the

same sets of attributes. On the other hand, Chase and
Chow [21] proposed a multiple-authority ABE (CC MA-
ABE) solution in which multiple TAs, each governing a
different subset of the system’s users’ attributes, generate
user secret keys collectively. A user needs to obtain one
part of her key from each TA. This scheme prevents
against collusion among at most N − 2 TAs, in addition
to user collusion resistance. However, it is not clear how
to realize efficient user revocation. In addition, since CC
MA-ABE embeds the access policy in users’ keys rather
than the ciphertext, a direct application of it to a PHR
system is non-intuitive, as it is not clear how to allow
data owners to specify their file access policies. We give
detailed overviews to the YWRL scheme and CC MA-
ABE scheme in the supplementary material.

2.2 Revocable ABE

It is a well-known challenging problem to revoke user-
s/attributes efficiently and on-demand in ABE. Tradi-
tionally this is often done by the authority broadcast-
ing periodic key updates to unrevoked users frequent-
ly [13], [22], which does not achieve complete back-
ward/forward security and is less efficient. Recently, [23]
and [24] proposed two CP-ABE schemes with immedi-
ate attribute revocation capability, instead of periodical
revocation. However, they were not designed for MA-
ABE.

In addition, Ruj et al. [25] proposed an alternative
solution for the same problem in our paper using Lewko
and Waters’s (LW) decentralized ABE scheme [26]. The
main advantage of their solution is, each user can obtain
secret keys from any subset of the TAs in the system,
in contrast to the CC MA-ABE. The LW ABE scheme
enjoys better policy expressiveness, and it is extended
by [25] to support user revocation. On the downside,
the communication overhead of key revocation is still
high, as it requires a data owner to transmit an updated
ciphertext component to every non-revoked user. They
also do not differentiate personal and public domains.

In this paper, we bridge the above gaps by proposing
a unified security framework for patient-centric sharing
of PHRs in a multi-domain, multi-authority PHR system
with many users. The framework captures application-
level requirements of both public and personal use of a
patient’s PHRs, and distributes users’ trust to multiple
authorities that better reflects reality. We also propose a
suite of access control mechanisms by uniquely combin-
ing the technical strengths of both CC MA-ABE [21] and
the YWRL ABE scheme [9]. Using our scheme, patients
can choose and enforce their own access policy for each
PHR file, and can revoke a user without involving high
overhead. We also implement part of our solution in a
prototype PHR system.
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TABLE 1
Frequently used notations

UD,UR The attribute universes for data and roles
T , L(T ) A user access tree and its leaf node set
AC
k Attributes in the ciphertext (from the kth AA)

Au
k User u’s attributes given by the kth AA

A, a An attribute type, a specific attribute value of that type
P Access policy for a PHR document
P A key-policy assigned to a user
MK,PK Master key and public key in ABE
SK A user’s secret key in ABE
rk

(k)
j Proxy re-key for attribute j and version k

3 FRAMEWORK FOR PATIENT-CENTRIC, SE-
CURE AND SCALABLE PHR SHARING

In this section, we describe our novel patient-centric
secure data sharing framework for cloud-based PHR
systems. The main notations are summarized in Table 1.

3.1 Problem Definition

We consider a PHR system where there are multiple PHR
owners and PHR users. The owners refer to patients who
have full control over their own PHR data, i.e., they can
create, manage and delete it. There is a central server
belonging to the PHR service provider that stores all
the owners’ PHRs. The users may come from various
aspects; for example, a friend, a caregiver or a researcher.
Users access the PHR documents through the server in
order to read or write to someone’s PHR, and a user can
simultaneously have access to multiple owners’ data.

A typical PHR system uses standard data formats.
For example, continuity-of-care (CCR) (based on XML
data structure), which is widely used in representative
PHR systems including Indivo [27], an open-source PHR
system adopted by Boston Children’s Hospital. Due to
the nature of XML, the PHR files are logically organized
by their categories in a hierarchical way [8], [20].

3.1.1 Security Model

In this paper, we consider the server to be semi-trusted,
i.e., honest but curious as those in [28] and [15]. That
means the server will try to find out as much secret
information in the stored PHR files as possible, but they
will honestly follow the protocol in general. On the other
hand, some users will also try to access the files beyond
their privileges. For example, a pharmacy may want to
obtain the prescriptions of patients for marketing and
boosting its profits. To do so, they may collude with
other users, or even with the server. In addition, we
assume each party in our system is preloaded with a
public/private key pair, and entity authentication can
be done by traditional challenge-response protocols.

3.1.2 Requirements

To achieve “patient-centric” PHR sharing, a core require-
ment is that each patient can control who are authorized

to access to her own PHR documents. Especially, user-
controlled read/write access and revocation are the two
core security objectives for any electronic health record
system, pointed out by Mandl et. al. [7] in as early as
2001. The security and performance requirements are
summarized as follows:

• Data confidentiality. Unauthorized users (including
the server) who do not possess enough attributes
satisfying the access policy or do not have proper
key access privileges should be prevented from
decrypting a PHR document, even under user collu-
sion. Fine-grained access control should be enforced,
meaning different users are authorized to read dif-
ferent sets of documents.

• On-demand revocation. Whenever a user’s attribute is
no longer valid, the user should not be able to access
future PHR files using that attribute. This is usually
called attribute revocation, and the corresponding se-
curity property is forward secrecy [23]. There is also
user revocation, where all of a user’s access privileges
are revoked.

• Write access control. We shall prevent the unautho-
rized contributors to gain write-access to owners’
PHRs, while the legitimate contributors should ac-
cess the server with accountability.

• The data access policies should be flexible, i.e.,
dynamic changes to the predefined policies shall be
allowed, especially the PHRs should be accessible
under emergency scenarios.

• Scalability, efficiency and usability. The PHR system
should support users from both the personal do-
main and public domains. Since the set of users
from the public domain may be large in size and
unpredictable, the system should be highly scalable,
in terms of complexity in key management, commu-
nication, computation and storage. Additionally, the
owners’ efforts in managing users and keys should
be minimized to enjoy usability.

3.2 Overview of Our Framework
The main goal of our framework is to provide secure
patient-centric PHR access and efficient key management
at the same time. The key idea is to divide the system
into multiple security domains (namely, public domains
(PUDs) and personal domains (PSDs)) according to the
different users’ data access requirements. The PUDs con-
sist of users who make access based on their professional
roles, such as doctors, nurses and medical researchers. In
practice, a PUD can be mapped to an independent sector
in the society, such as the health care, government or
insurance sector. For each PSD, its users are personally
associated with a data owner (such as family members
or close friends), and they make accesses to PHRs based
on access rights assigned by the owner.

In both types of security domains, we utilize ABE to
realize cryptographically enforced, patient-centric PHR
access. Especially, in a PUD multi-authority ABE is
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Fig. 1. The proposed framework for patient-centric, se-
cure and scalable PHR sharing on semi-trusted storage
under multi-owner settings.

used, in which there are multiple “attribute authorities”
(AAs), each governing a disjoint subset of attributes.
Role attributes are defined for PUDs, representing the
professional role or obligations of a PUD user. Users in
PUDs obtain their attribute-based secret keys from the
AAs, without directly interacting with the owners. To
control access from PUD users, owners are free to specify
role-based fine-grained access policies for her PHR files,
while do not need to know the list of authorized users
when doing encryption. Since the PUDs contain the
majority of users, it greatly reduces the key management
overhead for both the owners and users.

Each data owner (e.g., patient) is a trusted authority
of her own PSD, who uses a KP-ABE system to manage
the secret keys and access rights of users in her PSD.
Since the users are personally known by the PHR owner,
to realize patient-centric access, the owner is at the best
position to grant user access privileges on a case-by-case
basis. For PSD, data attributes are defined which refer
to the intrinsic properties of the PHR data, such as the
category of a PHR file. For the purpose of PSD access,
each PHR file is labeled with its data attributes, while the
key size is only linear with the number of file categories
a user can access. Since the number of users in a PSD is
often small, it reduces the burden for the owner. When
encrypting the data for PSD, all that the owner needs to
know is the intrinsic data properties.

The multi-domain approach best models different user
types and access requirements in a PHR system. The use
of ABE makes the encrypted PHRs self-protective, i.e.,
they can be accessed by only authorized users even when
storing on a semi-trusted server, and when the owner
is not online. In addition, efficient and on-demand user
revocation is made possible via our ABE enhancements.

3.3 Details of the Proposed Framework
In our framework, there are multiple SDs, multiple
owners, multiple AAs, and multiple users. In addition,

Fig. 2. The attribute hierarchy of files – leaf nodes are
atomic file categories while internal nodes are compound
categories. Dark boxes are the categories that a PSD’s
data reader have access to.

two ABE systems are involved: for each PSD the YWRL’s
revocable KP-ABE scheme [9] is adopted; for each PUD,
our proposed revocable MA-ABE scheme (described in
Sec. 4) is used. The framework is illustrated in Fig. 1.
We term the users having read and write access as data
readers and contributors, respectively.

System Setup and Key Distribution. The system first
defines a common universe of data attributes shared
by every PSD, such as “basic profile”, “medical his-
tory”, “allergies”, and “prescriptions”. An emergency
attribute is also defined for break-glass access. Each PHR
owner’s client application generates its corresponding
public/master keys. The public keys can be published
via user’s profile in an online healthcare social-network
(HSN) (which could be part of the PHR service; e.g., the
Indivo system [27]). There are two ways for distributing
secret keys. First, when first using the PHR service, a
PHR owner can specify the access privilege of a data
reader in her PSD, and let her application generate
and distribute corresponding key to the latter, in a way
resembling invitations in GoogleDoc. Second, a reader
in PSD could obtain the secret key by sending a request
(indicating which types of files she wants to access) to
the PHR owner via HSN, and the owner will grant her
a subset of requested data types. Based on that, the
policy engine of the application automatically derives an
access structure, and runs keygen of KP-ABE to generate
the user secret key that embeds her access structure.
In addition, the data attributes can be organized in a
hierarchical manner for efficient policy generation, see
Fig. 2. When the user is granted all the file types under
a category, her access privilege will be represented by
that category instead.

For the PUDs, the system defines role attributes,
and a reader in a PUD obtains secret key from AAs,
which binds the user to her claimed attributes/roles.
For example, a physician in it would receive “hospital
A, physician, M.D., internal medicine” as her attributes
from the AAs. In practice, there exist multiple AAs
each governing a different subset of role attributes. For
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instance, hospital staffs shall have a different AA from
pharmacy specialists. This is reflected by (1) in Fig. 1.
MA-ABE is used to encrypt the data, and the concrete
mechanism will be presented in Sec. 4. In addition, the
AAs distribute write keys that permit contributors in
their PUD to write to some patients’ PHR ((2)).

PHR Encryption and Access. The owners upload
ABE-encrypted PHR files to the server ((3)). Each own-
er’s PHR file is encrypted both under a certain fine-
grained and role-based access policy for users from
the PUD to access, and under a selected set of data
attributes that allows access from users in the PSD. Only
authorized users can decrypt the PHR files, excluding
the server. For improving efficiency, the data attributes
will include all the intermediate file types from a leaf
node to the root. For example, in Fig. 2, an “allergy” file’s
attributes are {PHR,medical history, allergy}. The data
readers download PHR files from the server, and they
can decrypt the files only if they have suitable attribute-
based keys ((5)). The data contributors will be granted
write access to someone’s PHR, if they present proper
write keys ((4)).

User Revocation. Here we consider revocation of a
data reader or her attributes/access privileges. There
are several possible cases: 1) revocation of one or more
role attributes of a public domain user; 2) revocation of
a public domain user which is equivalent to revoking
all of that user’s attributes. These operations are done
by the AA that the user belongs to, where the actual
computations can be delegated to the server to improve
efficiency ((8)). 3) Revocation of a personal domain user’s
access privileges; 4) revocation of a personal domain
user. These can be initiated through the PHR owner’s
client application in a similar way.

Policy Updates. A PHR owner can update her shar-
ing policy for an existing PHR document by updating
the attributes (or access policy) in the ciphertext. The
supported operations include add/delete/modify, which
can be done by the server on behalf of the user.

Break-glass. When an emergency happens, the regular
access policies may no longer be applicable. To handle
this situation, break-glass access is needed to access the
victim’s PHR. In our framework, each owner’s PHR’s ac-
cess right is also delegated to an emergency department
(ED, (6)). To prevent from abuse of break-glass option,
the emergency staff needs to contact the ED to verify
her identity and the emergency situation, and obtain
temporary read keys ((7)). After the emergency is over,
the patient can revoke the emergent access via the ED.

An Example. Here we demonstrate how our frame-
work works using a concrete example. Suppose PHR
owner Alice is a patient associated with hospital A.
After she creates a PHR file F1 (labeled as “PHR;
medical history; allergy; emergency” in Fig. 2), she
first encrypts it according to both F1’s data labels
(under the YWRL KP-ABE), and a role-based file ac-
cess policy P1 (under our revocable MA-ABE). This
policy can be decided based on recommended set-

tings by the system, or Alice’s own preference. It may
look like P1:=“(profession=physician)∧ (specialty=internal
medicine)∧(organization=hospital A)”. She also sends the
break-glass key to the ED. In addition, Alice determines
the access rights of users in her PSD, which can be
done either on-line or off-line. For example, she may
approve her friend Bob’s request to access files with
labels {personal info} or {medical history}. Her client
application will distribute a secret key with the ac-
cess structure (personal info∨medical history) to Bob.
When Bob wants to access another file F2 with labels
“PHR - medical history - medications”, he is able to
decrypt F2 due to the “medical history” attribute. For
another user Charlie who is a physician specializing in
internal medicine in hospital B in the PUD, he obtains
his secret key from multiple AAs such as the American
Medical Association (AMA), the American Board of
Medical Specialties (ABMS), and the American Hospital
Association (AHA). But he cannot decrypt F1, because
his role attributes do not satisfy P1. Finally, an emer-
gency room staff, Dorothy who temporarily obtains the
break-glass key from ED, can gain access to F1 due to
the emergency attribute in that key.

Remarks. The separation of PSD/PUD and data/role
attributes reflects the real-world situation. First, in the
PSD, a patient usually only gives personal access of
his/her sensitive PHR to selected users, such as family
members and close friends, rather than all the friends in
the social network. Different PSD users can be assigned
different access privileges based on their relationships
with the owner. In this way, patients can exert fine-
control over the access for each user in their PSDs.
Second, by our multi-domain and multi-authority frame-
work, each public user only needs to contact AAs in
its own PUD who collaboratively generates a secret
key for the user, which reduces the workload per AA
(since each AA handles fewer number of attributes per
key issuing). In addition, the multi-authority ABE is
resilient to compromise of up to N − 2 AAs in a PUD,
which solves the key-escrow problem. Furthermore, in
our framework user’s role verification is much easier.
Different organizations can form their own (sub)domains
and become AAs to manage and certify different sets of
attributes, which is similar to divide and rule.

4 MAIN DESIGN ISSUES

In this section, we address several key design issues in
secure and scalable sharing of PHRs in cloud computing,
under the proposed framework.

4.1 Using MA-ABE in the Public Domain
For the PUDs, our framework delegates the key manage-
ment functions to multiple attribute authorities. In order
to achieve stronger privacy guarantee for data owners,
the Chase-Chow (CC) MA-ABE scheme [21] is used,
where each authority governs a disjoint set of attributes
distributively. It is natural to associate the ciphertext of
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TABLE 2
Sample secret keys and key-policies for three public users in the health care domain.

Attribute authority AMA ABMS AHA
Attribute type A1 :Profession A2 :License status A3 :Medical specialty A4 : Organization
Au1 : user 1 Physician * M.D. ∗ Internal medicine * Hospital A *
Au2 : user 2 Nurse * Nurse license ∗ Gerontology * Hospital B *
Au3 : user 3 Pharmacist * Pharm. license ∗ General * Pharmacy C *
Key policies 1-out-of-n1 ∧ 1-out-of-n2 1-out-of-n3 1-out-of-n4

a PHR document with an owner-specified access policy
for users from PUD. However, one technical challenge is
that CC MA-ABE is essentially a KP-ABE scheme, where
the access policies are enforced in users’ secret keys, and
those key-policies do not directly translate to document
access policies from the owners’ points of view. By our
design, we show that by agreeing upon the formats
of the key-policies and the rules of specifying which
attributes are required in the ciphertext, the CC MA-ABE
can actually support owner-specified document access
policies with some degree of flexibility (such as the one
in Fig. 4), i.e., it functions similar to CP-ABE2.

In order to allow the owners to specify an access policy
for each PHR document, we exploit the fact that the basic
CC MA-ABE works in a way similar to fuzzy-IBE, where
the threshold policies (e.g., k out of n) are supported.
Since the threshold gate has an intrinsic symmetry from
both the encryptor and the user’s point of views, we can
pre-define the formats of the allowed document policies
as well as those of the key-policies, so that an owner can
enforce a file access policy through choosing which set
of attributes to be included in the ciphertext.

4.1.1 Basic Usage of MA-ABE
Setup. In particular, the AAs first generate the MKs and
PK using setup as in CC MA-ABE. The k-th AA defines
a disjoint set of role attributes Uk, which are relatively
static properties of the public users. These attributes
are classified by their types, such as profession and
license status, medical specialty, and affiliation where
each type has multiple possible values. Basically, each
AA monitors a disjoint subset of attribute types. For
example, in the healthcare domain, the AMA may issue
medical professional licenses like “physician”, “M.D.”,
“nurse”, “entry-level license” etc., the ABMS could cer-
tify specialties like “internal medicine”, “surgery” etc;
and AHA may define user affiliations such as “hospital
A” and “pharmacy D”. In order to represent the “do not
care” option for the owners, we add one wildcard attribute
“*” in each type of the attributes.

Document Policy Generation and Encryption. In the
basic usage, we consider a special class of access policy
—- conjunctive normal form (CNF), P :=

(
(A1 = a1,1)∨

· · · ∨ (A1 = a1,d1)
)
∧ · · · ∧

(
(Am = am,1) ∨ · · · ∨ (Am =

2. Recently Lewko and Waters proposed a multi-authority CP-ABE
construction [29], but it does not support on-demand attribute revoca-
tion.

am,dm)
)

, where ai,j could be “*”, and m is the total
number of attribute types. For such a file access policy,
an owner encrypts the file as follows (all the attributes
in this section are role attributes):

Definition 1 (Basic Encryption Rule for PUD): Let P be
in CNF form, then P is required to contain at least one
attribute from each type, and the encryptor associates
the ciphertext with all the attributes on the leaf of the
access tree corresponding to P .

Key Policy Generation and Key Distribution. In
CC [21], the format of the key-policies is restricted to
conjunctions among different AAs, i.e., P := P1∧· · ·∧PN ,
where Pk could correspond to arbitrary monotonic ac-
cess structure. To be able to implement the CNF doc-
ument policy, each AA need to follow the rule of key
distribution:

Definition 2 (Basic Key Policy Generation Rule for PUD):
Let P be in the above form. For the secret key of user
u, A

u
k should contain at least one attribute from every

type of attributes governed by AAk, and always
include the wildcard associated with each type. In
addition, the key policy Pk of u issued by AAk is
(1 out of nk1)∧ · · · ∧ (1 out of nkt), where nk1 · · ·nkt are
the indices of attribute types governed by AAk.

In the above, Au
k is the set of role attributes u obtains

from AAk. After key distribution, the AAs can remain
offline for most of the time. A detailed key distribution
example is given in Table. 2.

The following two properties ensure that the set of
users that can decrypt a file with an access policy P is
equivalent to the set of users with key access structures
such that the ciphertext’s attribute set (P’s leaf nodes)
will satisfy.

Definition 3 (Correctness): Given a ciphertext and its
corresponding file access policy P and its leaf node set
L(P) = A

C , a user access tree T and its leaf node set
L(T ) = A

u, P(L(T )) = 1 ⇒ T (L(P)) = 1. That is,
whenever the attributes in user secret key satisfy the file
access policy, the attributes in the access policy should
satisfy the access structure in user secret key.

Definition 4 (Completeness): Conversely, T (L(P)) = 1
⇒ P(L(T )) = 1.

Theorem 1: Following the above proposed key gener-
ation and encryption rules, the CNF file access policy
achieves both correctness and completeness.

Proof: In the following, subscript i of an attribute
set denotes the subset of attributes belonging to the i-th
type.
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Fig. 3. Illustration of the enhanced key-policy generation
rule. Solid horizontal lines represent possible attribute
associations for two users.

• correctness (⇒). If P(L(T )) = 1 (i.e., L(T ) satisfies
P), ∀i = 1, · · · ,m, ∃a ∈ A

C
i ∩ Li(T ). Since the i-th

policy term in P (corresponding to user access tree
T ) is “1 out of ni”, this implies T (L(P)) = 1.

• Completeness (⇐): it is easy to see the above is
reversible, due to the symmetry of set intersection.

The above theorem essentially states, the CC MA-
ABE can be used in a fashion like CP-ABE when the
document access policy is CNF. In practice, the above
rules need to be agreed and followed by each owner
and AA. It is easy to generalize the above conclusions
to conjunctive forms with each term being a threshold
logic formula, which will not be elaborated here.

4.1.2 Achieving More Expressive File Access Policies
By enhancing the key-policy generation rule, we can
enable more expressive encryptor’s access policies. We
exploit an observation that in practice, a user’s at-
tributes/roles belonging to different types assigned by
the same AA are often correlated with respect to a primary
attribute type. In the following, an attribute tuple refers
to the set of attribute values governed by one AA (each
of a different type) that are correlated with each other.

Definition 5 (Enhanced Key-Policy Generation Rule): In
addition to the basic key-policy generation rule, the
attribute tuples assigned by the same AA for different
users do not intersect with each other, as long as their
primary attribute types are distinct.

Definition 6 (Enhanced Encryption Rule): In addition to
the basic encryption rule, as long as there are multiple
attributes of the same primary type, corresponding non-
intersected attribute tuples are included in the ciphertex-
t’s attribute set.

This primary-type based attribute association is illus-
trated in Fig. 3. Note that there is a “horizontal asso-
ciation” between two attributes belonging to different
types assigned to each user. For example, in the first
AA (AMA) in Table 2, “license status” is associated with
“profession”, and “profession” is a primary type. That
means, a physician’s possible set of license status do not
intersect with that of a nurse’s, or a pharmacist’s. An
“M.D.” license is always associated with “physician”,
while “elderly’s nursing licence” is always associated
with “nurse”. Thus, if the second level key policy within
the AMA is “1 out of n1 ∧ 1 out of n2”, a physician
would receive a key like “(physician OR *) AND (M.D.

Fig. 4. An example policy realizable under our framework
using MA-ABE, following the enhanced key generation
and encryption rules.

OR *)” (recall the assumption that each user can only
hold at most one role attribute in each type), nurse’s
will be like “(nurse OR *) AND (elderly’s nursing licence
OR *)”. Meanwhile, the encryptor can be made aware
of this correlation, so she may include the attribute set:
{physician, M.D., nurse, elderly’s nursing licence} dur-
ing encryption. Due to the attribute correlation, the set
of users that can have access to this file can only possess
one out of two sets of possible roles, which means the
following policy is enforced: “(physician AND M.D.)
OR (nurse AND elderly’s nursing licence)”. The direct
consequence is it enables a disjunctive normal form (DNF)
encryptor access policy to appear at the second level. If
the encryptor wants to enforce such a DNF policy under
an AA, she can simply include all the attributes in that
policy in the ciphertext.

Furthermore, if one wants to encrypt with wildcard
attributes in the policy, say: “(physician AND M.D.) OR
(nurse AND any nursing license)” the same idea can
be used, i.e., we can simply correlate each “profession”
attribute with its proprietary “*” attribute. So we will
have “∗nursing license, ∗physician license” etc. in the users’ keys.
The above discussion is summarized in Fig. 4 by an
example encryptor’s policy.

If there are multiple PUDs, then P = ∪PUDj{PPUDj},
and multiple sets of ciphertext components needs to be
included. Since in reality, the number of PUDs is usually
small, this method is more efficient and secure than a
straightforward application of CP-ABE in which each
organization acts as an authority that governs all types of
attributes [1], and the length of ciphertext grows linearly
with the number of organizations. For efficiency, each file
is encrypted with a randomly generated file encryption
key (FEK), which is then encrypted by ABE.

4.1.3 Summary
In this above, we present a method to enforce owner’s
access policy during encryption, which utilizes the MA-
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ABE scheme in a way like CP-ABE. The essential idea is
to define a set of key-generation rules and encryption
rules. There are two layers in the encryptor’s access
policy, the first one is across different attribute authorities
while the second is across different attributes governed
by the same AA. For the first layer, conjunctive policy
is enabled; for the second, either k-out-of-n or DNF
policy are supported. We exploit the correlations among
attribute types under an AA to enable the extended
second-level DNF policy.

Next we summarize the formats of user secret key and
ciphertext in our framework. A user u in an owner’s PSD
has the following keys: SKPSD

u = 〈{Di}i∈Au
PSD

〉, where
Di follows the construction of the YWRL ABE scheme
(shown in supplementary material), and A

u
PSD is the

attribute set in the key policy for u. For a user u in a PUD,
SKPUD

u = 〈Du, {Dk,i}k∈{1,...,N},i∈Au
k
〉, where Du and

Dk,i are defined according to the MA-ABE scheme (also
in supplementary material), and A

u
k include attributes in

the key policy issued by AAk.
The ciphertext of file F is: E(F ) =

〈EABE(FEK), EFEK(F )〉, where EFEK(F )
is a symmetric key encryption of F , and
EABE(FEK) = 〈EPSD(FEK), EPUD(FEK)〉, where
each of the ciphertexts are encrypted using the YWRL
ABE scheme and MA-ABE scheme, respectively.

4.2 Enhancing MA-ABE for User Revocation

The original CC MA-ABE scheme does not enable ef-
ficient and on-demand user revocation. To achieve this
for MA-ABE, we combine ideas from YWRL’s revocable
KP-ABE [9], [15] (its details are shown in supplementary
material), and propose an enhanced MA-ABE scheme.
In particular, an authority can revoke a user or user’s
attributes immediately by re-encrypting the ciphertexts
and updating users’ secret keys, while a major part of
these operations can be delegated to the server which
enhances efficiency.

The idea to revoke one attribute of a user in MA-ABE
is as follows. The AA who governs this attribute actively
updates that attribute for all the affected unrevoked user-
s. To this end, the following updates should be carried
out: (1) the public/master key components for the affect-
ed attribute; (2) the secret key component corresponding
to that attribute of each unrevoked user; (3) Also, the
server shall update all the ciphertexts containing that
attribute. In order to reduce the potential computational
burden for the AAs, we adopt proxy encryption to del-
egate operations (2) and (3) to the server, and use lazy-
revocation to reduce the overhead. In particular, each
data attribute i is associated with a version number veri.
Upon each revocation event, if i is an affected attribute,
the AA submits a re-key rki↔i′ = t′i/ti to the server, who
then re-encrypts the affected ciphertexts and increases
their version numbers. The unrevoked users’ secret key
components are updated via a similar operation using
the re-key. To delegate secret key updates to the server,

• Setup(1κ) The same as Setup from [21], except that
each AAk (k = {1, ..., N − 1}) defines an additional
dummy attribute A∗k with its corresponding public key
and master key components, and each AA initializes a
version number ver = 1. The AAs publish (ver, PK),
while (ver,MKk) is held by AAk.

• KeyIssue(Au,MK,PK) The same as KeyIssue from [21],
except the key-policy A

u of each user must be ANDed
with A∗1, ..., A

∗
N−1. The user receives (ver, SKu), where

ver is the current version number.
• Encrypt(M,AC

PUD, PK) The same as Encryption from
[21], except that A∗k must be part of A

C
AAk

(∀k ∈
{1, ..., N − 1}). It outputs CT = 〈ver, E0 = M · Y s, E1 =
gs2, {Ck,i = T s

k,i}i∈AC
PUD

,k∈{1,...,N}〉. The encryptor stores
the random number s used to compute CT .

• Decrypt(CT, PK, SKu) The same as Decryption in [21],
except it uses PK and SKu with the same ver as in CT .

• MinimalSet(Au) First, each AAk runs algorithm γk ←
AMinimalSet(Au

k) from [9]. Then kmin ← argmin
k

{|γk|},

and output γkmin .
• ReKeyGen(γ,MKk) Executed by AAk. Given a set

of attributes γ, for each i ∈ γ, run algorithm
AUpdateAtt(i,MKk) from [9] and output local re-key as
rkk = (ver, {rkk,i↔i′}i∈Uk ) where Uk is the attribute
universe governed by AAk. The global re-key is rk =
{rkk}1≤k≤N . Increase the system’s ver by 1 (the other
AAs will synchronize).

• ReEnc(CT, rk) Executed by the server. For each 1 ≤
k ≤ N, i ∈ A

C
PUDk

, run algorithm C′k,i ←
AUpdateAtt4File(i, Ck,i, AHLk,i) from [9], which updates
ciphertext component Ck,i to its latest ver, where AHL
is an attribute history list. Output CT ′ = (ver +
1,AC

PUD, E0, E1, {C′k,i}i∈AC
PUDk

,k∈{1,...,N}).
• KeyUpdate(SKu, rk) User u gives part of SKu to

the server (except the dummy components). For each
1 ≤ k ≤ N, i ∈ A

u
PUDk

, run algorithm D′k,i ←
AUpdateSK(i,Dk,i, AHLk,i) from [9]. Outputs SK′

u =
(ver + 1, Du, {D′k,i}k∈{1,...,N},i∈Au

PUDk
).

• PolicyUpdate(ÃC
PUD, CT, s). CT is parsed as:

〈ver,AC
PUD, E0, E1, {Ck,i}i∈AC

PUD
,k∈{1,...,N}〉. For

each i ∈ {ÃC
PUD − A

C
PUD}, compute Ck,i = T s

k,i.
For each i ∈ {AC

PUD − Ã
C
PUD}, delete Ck,i. Output

C̃T = 〈ver, ÃC
PUD, E0, E1, {Ck,i}i∈ÃC

PUD
,k∈{1,...,N}〉.

Fig. 5. The enhanced MA-ABE scheme with on-demand
revocation capabilities.

a dummy attribute needs to be additionally defined by
each of N − 1 AAs, which are always ANDed with each
user’s key-policy to prevent the server from grasping the
secret keys. This also maintains the resistance against up
to N − 2 AA collusion of MA-ABE (as will be shown by
our security proof). Using lazy-revocation, the affected
ciphertexts and user secret keys are only updated when
an affected unrevoked user logs into the system next
time. By the form of the re-key, all the updates can be
aggregated from the last login to the most current one.

To revoke a user in MA-ABE, one needs to find out
a minimal subset of attributes (γ) such that without it
the user’s secret key’s access structure (Au) will never
be satisfied. Because our MA-ABE scheme requires con-
junctive access policy across the AAs, it suffices to find
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a minimal subset by each AAk (γk ⊆ A
u
k), without which

A
u
k will not be satisfied, and then compute the minimal

set (γkmin ) out of all γk. The AAkmin will initiate the
revocation operation.

The enhanced CC MA-ABE scheme with immediate
revocation capabilities is formally described in Fig. 5.
It has nine algorithms, where MinimalSet, ReKeyGen,
ReEnc and KeyUpdate are related to user revoca-
tion, and PolicyUpdate is for handling dynamic policy
changes. A version number is used to record and dif-
ferentiate the system states (PK, MK, SK, CT ) after
each revocation operation. Since this scheme combines
[9] and [21], the differences with respect to each of them
are highlighted.

4.3 Enforce Write Access Control

If there is no restrictions on write access, anyone may
write to someone’s PHR using only public keys, which
is undesirable. By granting write access, we mean a data
contributor should obtain proper authorization from the
organization she is in (and/or from the targeting owner),
which shall be able to be verified by the server who
grants/rejects write access.

A naive way is to let each contributor obtain a sig-
nature from her organization every time she intends to
write. Yet this requires the organizations be always on-
line. The observation is that, it is desirable and practical
to authorize according to time periods whose granularity
can be adjusted. For example, a doctor should be permit-
ted to write only during her office hours; on the other
hand, the doctor must not be able to write to patients that
are not treated by her. Therefore, we combine signatures
with the hash chain technique to achieve our goals.

Suppose the time granularity is set to Δt, and the time
is divided into periods of Δt. For each working cycle
(e.g. a day), an organization generates a hash chain [30],
[31]: H = {h0, h1, ..., hn}, where H(hi−1) = hi, 1 ≤ i ≤ n.
At time 0, the organization broadcasts a signature of
the chain end hn (σorg(hn)) to all users in its domain,
where σ(·) stands for an unforgeable signature scheme.
After that it multicasts hn−i to the set of authorized
contributors at each time period i. Note that, the above
method enables timely revocation of write access, i.e., the
authority simply stops issuing hashes for a contributor
at the time of revocation. In addition, an owner could
distribute a time-related signature: σowner(ts, tt) to the
entities that requests write access (which can be dele-
gated to the organization), where ts is the start time
of the granted time window, and tt is the end of the
time window. For example, to enable a billing clerk
to add billing information to Alice’s PHR, Alice can
specify “8am to 5pm” as the granted time window at the
beginning of a clinical visit. Note that, for contributors in
the PSD of the owner, they only need to obtain signatures
from the owner herself.

Generally, during time period j, an authorized con-
tributor w submits a “ticket” to the server after being

authenticated to it:

Ĕpkserver (σowner(ts||tt)||σorg(hn)||hn−j ||r)

where Ĕpkserver is the public key encryption using the
server’s public key, and r is a nonce to prevent replay
attack. The server verifies if the signatures are correct
using both org’s and owner’s public keys, and whether
Hj(hn−j) = hn, where Hj() means hash j times. Only if
both holds, the contributor is granted write access and
the server accepts the contents uploaded subsequently.

4.4 Handle Dynamic Policy Changes
Our scheme should support the dynamic
add/modify/delete of part of the document access
policies or data attributes by the owner. For example, if
a patient does not want doctors to view her PHR after
she finishes a visit to a hospital, she can simply delete
the ciphertext components corresponding to attribute
“doctor” in her PHR files. Adding and modification
of attributes/access policies can be done by proxy re-
encryption techniques [22]; however they are expensive.
To make the computation more efficient, each owner
could store the random number s used in encrypting
the FEK3 of each document on her own computer, and
construct new ciphertext components corresponding to
added/changed attributes based on s. The PolicyUpdate
algorithm is shown in Fig. 5.

To reduce the storage cost, the owner can merely
keep a random seed s′ and generate the s for each
encrypted file from s′, such as using a pseudorandom
generator. Thus the main computational overhead to
modify/add one attribute in the ciphertext is just one
modular exponentiation operation.

4.5 Deal with Break-glass Access
For certain parts of the PHR data, medical staffs need to
have temporary access when an emergency happens to a
patient, who may become unconscious and is unable to
change her access policies beforehand. The medical staffs
will need some temporary authorization (e.g., emergency
key) to decrypt those data. Under our framework, this
can be naturally achieved by letting each patient delegate
her emergency key to an emergency department (ED).
Specifically, in the beginning, each owner defines an
“emergency” attribute and builds it into the PSD part
of the ciphertext of each PHR document that she allows
break-glass access. She then generates an emergency key
skEM using the single-node key-policy “emergency”,
and delegates it to the ED who keeps it in a database
of patient directory. Upon emergency, a medical staff
authenticates herself to the ED, requests and obtains
the corresponding patient’s skEM , and then decrypts the
PHR documents using skEM . After the patient recovers
from the emergency, she can revoke the break-glass

3. The details of the encryption algorithms are shown in supplemen-
tary material.
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TABLE 3
Comparison of security.

Scheme Security User domains Access policy Revocation Means
VFJPS [28] Not against user-server collusion All ACL level ACL level, immediate
BCHL [8] No collusion risk All ACL level N/A
HN [23] Not against user-server, single TA PUD Any monotonic formula Attribute-level, immediate
NGS [16] Single TA PUD Attribute and ID-based policy ACL level, immediate
RNS [25] Against N − 1 AA collusion PUD Any monotonic boolean formula Attribute-level, immediate
Our scheme Against N − 2 AA collusion All (PSD&PUD) Conjunctive form with wildcard Attribute-level, immediate

access by computing a re-key: rkEM , submit it to the
ED and the server to update her skEM and CT to their
newest versions, respectively.

Remarks. We note that, although using ABE and MA-
ABE enhances the system scalability, there are some
limitations in the practicality of using them in building
PHR systems. For example, in workflow-based access
control scenarios, the data access right could be given
based on users’ identities rather than their attributes,
while ABE does not handle that efficiently. In those
scenarios one may consider the use of attribute-based
broadcast encryption [32]. In addition, the expressibility
of our encryptor’s access policy is somewhat limited by
that of MA-ABE’s, since it only supports conjunctive
policy across multiple AAs. In practice, the credentials
from different organizations may be considered equally
effective, in that case distributed ABE schemes [33] will
be needed. We designate those issues as future works.

5 SECURITY ANALYSIS

In this section, we analyze the security of the proposed
PHR sharing solution. First we show it achieves data
confidentiality (i.e., preventing unauthorized read ac-
cesses), by proving the enhanced MA-ABE scheme (with
efficient revocation) to be secure under the attribute-
based selective-set model [21], [34]. We have the follow-
ing main theorem.

Theorem 2: The enhanced MA-ABE scheme guarantees
data confidentiality of the PHR data against unautho-
rized users and the curious cloud service provider, while
maintaining the collusion resistance against users and up
to N − 2 AAs.

In addition, our framework achieves forward secrecy,
and security of write access control. For detailed security
analysis and proofs, please refer to the online supple-
mentary material of this paper.

We also compare the security of our scheme with
several existing works, in terms of confidentiality guar-
antee, access control granularity and supported revoca-
tion method etc. We choose four representative state-of-
the-art schemes to compare with: 1) the VFJPS scheme
[28] based on access control list (ACL); 2) the BCHL
scheme based on HIBE [8] where each owner acts as
a key distribution center; 3) the HN revocable CP-ABE
scheme [23], where we adapt it by assuming using
one PUD with a single authority and multiple PSDs
to fit our setting; 4) the NGS scheme in [16] which is

a privacy-preserving EHR system that adopts attribute-
based broadcast encryption (ABBE) to achieve data ac-
cess control; 5) The RNS scheme in [25] that enhances
the Lewko-Waters MA-ABE with revocation capability
for data access control in the cloud.

The results are shown in Table 3. It can be seen that,
our scheme achieves high privacy guarantee and on-
demand revocation. The conjunctive policy restriction
only applies for PUD, while in PSD a user’s access
structure can still be arbitrary monotonic formula. In
comparison with the RNS scheme, in RNS the AAs are
independent with each other, while in our scheme the
AAs issue user secret keys collectively and interactively.
Also, the RNS scheme supports arbitrary monotonic
boolean formula as file access policy. However, our
user revocation method is more efficient in terms of
communication overhead. In RNS, upon each revocation
event, the data owner needs to recompute and send
new ciphertext components corresponding to revoked
attributes to all the remaining users. In our scheme,
such interaction is not needed. In addition, our pro-
posed framework specifically addresses the access re-
quirements in cloud-based health record management
systems by logically dividing the system into PUD and
PSDs, which considers both personal and professional
PHR users. Our revocation methods for ABE in both
types of domains are consistent. The RNS scheme only
applies to the PUD.

6 SCALABILITY AND EFFICIENCY

6.1 Storage and Communication Costs

First, we evaluate the scalability and efficiency of our
solution in terms of storage, communication and com-
putation costs. We compare with previous schemes in
terms of ciphertext size, user secret key size, public
key/information size, and revocation (re-keying) mes-
sage size.

Our analysis is based on the worst case where each
user may potentially access part of every owners’ data.
Table 4 is a list of notations, where in our scheme:
|U| = |UD| + |UR|, tc = |AC

PSD| + |AC
PUD| (includes one

emergency attribute), and tu = |Au
PSD|+ |Au

PUD| (a user
could be both in a PSD and PUD). Note that, since the
HN, NGS and RNS schemes do not separate PSD and
PUD, their |U| = |UR|, tc = |AC

PUD|, and tu = |Au
PUD|.

However, they only apply to PHR access in the PUD.
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TABLE 5
Comparison of efficiency.

Scheme Ciphertext size User secret key size Public key/info. size Revocation message
VFJPS [28] Sk No · Sk O(No ·Nu) O(Nu)
BCHL [8] l · S1+Sk l ·No · S1 2S1 ·No N/A
HN [23] (2tc + 1)S1 + ST + SP (2tu + 1)S1 + 2(log Nu)Sk 2(S1 + ST ) (Nu −Na)(log Nu

Nu−Na
)Sz

NGS [16] (tc + 2Nr)S1 + ST (tu + 4)S1 (m+ l+ 6)S1 + ST 0
RNS [25] tc(2S1 + ST ) + S′P tu · S1 |U|(S1 + ST ) O((tu + 1)ST · (Nu −Nr))
Our scheme (tc +m+N − 1)S1 + ST + SP (tu +m+ 1)S1 (|U|+N − 1)S1 tu · Sz

TABLE 4
Notations for efficiency comparison.

Sk Bit size of a FEK
S1 Bit size of an element in G1/G2

ST Bit size of an element in GT

Sz Bit size of an element in Z∗p
SP Bit size of access policy and attribute set in CT
N (or Ni) Number of AAs in a PUD (or the i-th PUD)
No The number of owners in the system
Nu The number of data users in the system
Nr Number of revoked users for a file
Na Number of users in an attribute group
m Number of attribute types in the PUD
tc, tu Total number of attributes appeared in CT, sku
l Depth of file hierarchy of an owner’s PHR

In addition, S′
P ∼ O(t2c) in the RNS scheme, while

SP ∼ O(tclogtc) for the rest.
The results are given in Table 5. The ciphertext size

only accounts for the encryption of FEK. In our scheme,
for simplicity we assume there is only one PUD, thus the
ciphertext includes m additional wildcard attributes and
up to N − 1 dummy attributes. Our scheme requires a
secret key size that is linear with |Au|, the number of
attributes of each user, while in the VFJPS and BCHL
schemes this is linear with No, since a user needs to
obtain at least one key from each owner whose PHR
file the user wants to access. For public key size, we
count the size of the effective information that each
user needs to obtain. The VFJPS scheme requires each
owner to publish a directed acyclic graph representing
her ACL along with key assignments, which essentially
amounts to O(Nu) per owner. This puts a large burden
either in communication or storage cost on the system.
For re-keying, we consider revocation of one user by
an owner in VFJPS and BCHL. In VFJPS, revoking one
user from a file may need over-encryption and issuing of
new public tokens for all the rest of users in the worst
case. The NGS scheme achieves direct user revocation
using ABBE, which eliminates the need of re-keying
and re-encryption; however, attribute revocation is not
achieved; and for the revocable ABBE in [32], either the
ciphertext size is linear with the number of revoked
users, or the public key is linear with the total number
of users in the system4. For the RNS scheme, the main
drawback is the large size of revocation messages to be

4. In Table 5, for NGS scheme we only listed the efficiency of one
of the two constructions in [32]. m and l are the maximum number of
attributes in a ciphertext policy and user’s secret key, respectively.

transmitted to non-revoked users.
In our scheme, revocation of one user u requires

revoking a minimum set of data attributes that makes
her access structure unsatisfiable. From Table 5, it can
be seen that our scheme has much smaller secret key
size compared with VFJPS and BCHL, smaller rekeying
message size than VFJPS, HN and RNS, the size of
ciphertext is smaller than NGS while being compara-
ble with HN and RNS. The public key size is smaller
than VFJPS and BCHL, and is comparable with that of
RNS; while it seems larger than those of HN and NGS,
note that we can use the large universe constructions
[21] to dramatically reduce the public key size. Overall,
compared with non-ABE schemes, our scheme achieves
higher scalability in key management. Compared with
existing revocable ABE schemes, the main advantage of
our solution is small re-keying message sizes. To revoke
a user, the maximum re-keying message size is linear
with the number of attributes in that user’s secret key.

These indicate our scheme is more scalable than exist-
ing works. To further show the storage and communica-
tion costs, we provide a numerical analysis using typical
parameter settings in the supplementary material.

6.2 Computation Costs
Next, we evaluate the computational cost of our scheme
through combined implementation and simulation. We
provide the first implementation of the GPSW KP-ABE
scheme [35] (to the best of our knowledge), and also
integrated the ABE algorithms into a prototype PHR
system, Indivo [27], [36]. The GPSW KP-ABE scheme is
tested on a PC with 3.4 GHz processor, using the pair-
ing based cryptography (PBC) library [37]. The public
parameters are chosen to provide 80 bits security level,
and we use a pairing-friendly type-A 160-bit elliptic
curve group [37]. This parameter setting has also been
adopted in other related works in ABE [19], [38]. We then
use the ABE algorithms to encrypt randomly generated
XML-formatted files (since real PHR files are difficult
to obtain), and implement the user-interfaces for data
input and output. Due to space limitations, the details
of prototype implementation are reported in [36].

In the supplementary material (Fig. 2), we present
benchmarks of cryptographic operations and detailed
timing results for the two ABE algorithms used by our
framework. It is shown that, the decryption operation in
our enhanced MA-ABE scheme is quite fast, because it
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TABLE 6
Computation complexity for each party in the system, and numerical estimation of time costs assuming following
parameters (also used in supplementary material): |UD| = 50, |UR| = 100, N = 5 (number of AAs), |AC

PSD| = 5,
|AC

PUD| = 35, |Au| = m = 15, |L(T )| = 10, |γ′| = 5 (a minimal number of attributes to revoke a user).

Setup KeyGen. (per user) Enc. (per file) Dec. (per file) User revo.
Owner |UD|Exp1 + ExpT |L(T )|Exp1 (|AC

PSD|+ |AC
PUD|+ 1)Exp1 + 2ExpT / |γ′|Exp1

Estimate (s) 0.32 0.064 0.264 / 0.032
PSD user / / / ∼ |L(T )|TP /
Estimate (s) / / / 0.025 /
PUD user / / / ∼ (|Au|+m+ 1)TP /
Estimate (s) / / / 0.078 /
kth AA (|UR|k + 1)Exp1 + ExpT ∼ |Au

k |Exp1 / / |γ′|Exp1
Estimate (s) 0.135 0.038 / / 0.032

involves only |AC
PUD|+1 pairing operations (in contrast,

the RNS scheme involves 2|AC
PUD| + 1 pairing opera-

tions). The time costs of key generation, encryption and
decryption processes are all linear with the number of
attributes. For 50 attributes, they all take less than 0.5s.

From the system aspect, each data owner (patient)
uses the YWRL ABE scheme for setup, key generation
and revocation, uses both YWRL and enhanced MA-
ABE for encryption. Each PSD user adopts the YWRL
scheme for decryption, while each PUD user adopts
the enhanced MA-ABE scheme for decryption. Each AA
uses enhanced MA-ABE for setup, key generation and
revocation. Next we provide estimations of computation
times of each party in the system in Table. 6. The values
are calculated from the example parameters and bench-
mark results, where exponentiation times Exp1 = 6.4ms,
ExpT = 0.6ms, pairing time TP = 2.5ms.

Finally, we simulate the server’s computation cost
spent in user revocation to evaluate the system perfor-
mance of user revocation. Especially, the lazy-revocation
method greatly reduces the cost of revocation, because
it aggregates multiple ciphertext/key update operations,
which amortizes the computations over time. The details
of the experimental/simulation evaluation results are
presented in the supplementary material.

7 CONCLUSION

In this paper, we have proposed a novel framework of
secure sharing of personal health records in cloud com-
puting. Considering partially trustworthy cloud servers,
we argue that to fully realize the patient-centric concept,
patients shall have complete control of their own privacy
through encrypting their PHR files to allow fine-grained
access. The framework addresses the unique challenges
brought by multiple PHR owners and users, in that we
greatly reduce the complexity of key management while
enhance the privacy guarantees compared with previous
works. We utilize ABE to encrypt the PHR data, so that
patients can allow access not only by personal users, but
also various users from public domains with different
professional roles, qualifications and affiliations. Further-
more, we enhance an existing MA-ABE scheme to handle
efficient and on-demand user revocation, and prove its

security. Through implementation and simulation, we
show that our solution is both scalable and efficient.
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